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In addition, tools are increasingly being 
designed to interoperate directly with other 
visualization and analysis tools. Such inter-
operation can enable, for example, simulta-
neous interactive visualization of a multiple 
sequence alignment with corresponding 
three-dimensional structures (Procter et 
al.2 and O’Donoghue et al.3)—or of a net-
work with corresponding heat maps, profile 
plots or phylogenetic trees and dendrograms 
(Gehlenborg et al.4).

Finally, many of today’s visualization 
tools can be either directly embedded into, 
or launched from, web pages; and such tools 
are being used to construct integrated web 
applications for data mining and browsing, 
often using multiple visualization tools. For 
example, the UCSC Genome Browser8 shows 
genomic sequences assembled from many 
laboratories and provides access to a diverse 
range of related data, including multiple 
sequence alignments among sequences from 
similar organisms, three-dimensional struc-
tures and in situ hybridization images.

The improved integration in visualiza-
tion tools has been helped greatly by a 
trend toward increased consolidation of 
experimental data. An exemplary case of this 
trend is macromolecular three-dimensional 
structure: almost all experimentally deter-
mined structures are consolidated in a single 
resource (wwPDB9). Unfortunately, such 
consolidation is still the exception: it is more 
typical in biology to have equivalent data 
distributed over many resources. In the case 
of image data from high-throughput experi-
ments, most of these data are never made 
publicly available, even though this would 
clearly be of value. Some preliminary steps 

disposal, many of these tools amenable to 
use by non-experts1.

A main reason for the increased accessibility 
and use of visualization software has been the 
advances in computer hardware and network 
access. Many visualization tasks that previ-
ously required expensive and specialized hard-
ware can now be easily managed with a stan-
dard personal computer. However, an equally 
important factor has been the development of 
a wide range of methods and tools specialized 
in visualizing specific kinds of biological data. 
In this Supplement, we discuss over 200 tools 
selected from the much greater number now 
available. This diversity of tools can be con-
fusing, but it is probably unavoidable, given 
the diverse nature of the biosciences. In fact, in 
many cases, biologists still find that their exact 
requirements are not met by current tools and 
often have to create custom solutions. This has 
helped spur a growing trend to allow reuse 
of visualization software, either by means of 
open source software libraries (for example, 
http://www.vtk.org/) or by means of architec-
tures specifically designed to allow extensions 
(for example, Cytoscape6).

Integration is improving
In the past, visualization tools were typically 
stand-alone programs designed to view data 
from a single experiment. In contrast, many 
of today’s tools are integrated with remote 
databases and provide visualizations that 
integrate data from multiple sources. For 
instance, Jalview7—a popular tool for edit-
ing multiple sequence alignments—can con-
nect to multiple data sources and displays not 
only alignments but also a wide variety of 
sequence feature information.

Computer-based visualization is widely used 
in biology to help understand and communi-
cate data, to generate ideas and to gain insight 
into biological processes. This collection of 
reviews examines the key methods now being 
used to visualize genomes1, alignments and 
phylogenies2, macromolecular structures3, 
systems biology data4 and image-based data5. 
Here, we outline several common trends, 
challenges and recent advances that suggest 
the nature of future visualization in biology.

Visualization goes mainstream
Twenty years ago, only experts could cre-
ate computer images of a protein structure 
at atomic detail, a large phylogenetic tree, 
or a complex biochemical pathway. Today, 
software tools for creating these images are 
widely available and widely used. Of the dif-
ferent visualization areas in biology, molec-
ular graphics3 is perhaps the most mature, 
and as a result, molecular graphic images are 
widely used in textbooks, presentations and 
popular media. Other fields, such as genome 
visualization1, are much younger; however, 
even here, molecular biologists have a rich 
toolbox of visualization software at their 
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level of detail appropriate to a particular 
scale. For example, in showing the three-
dimensional structure of a protein, ribbon 
representation is often used to hide all atoms 
except those involved in ligand interactions; 
as a user zooms out to see higher-order pro-
tein complexes, ribbon representation is too 
detailed and is replaced by an overall surface. 
Although the basic ideas are not new, the 
details of how to realize multiscale naviga-
tion vary greatly with the data type. This is 
the subject of ongoing research, particularly 
in visualizing genomic data, pathways and 
networks and joint visualization of image 
data sets acquired at different resolution, 
requiring multimodal image registration.

Innovative representations. In all areas of 
biology, new visual metaphors and graphi-
cal representations are being developed to 
convey information and to facilitate naviga-
tion. Innovation of representations is often 
inspired by the need to visualize new types 
of data or to support new analysis tasks. 
Examples include the need to display expres-
sion profile data together with pathway data 
(Gehlenborg et al.4) or the need to make 
genome assembly structures easier to see (for 
example, ABySS-Explorer15). In some cases, 
the innovations are brought in from outside 
of biology; for instance, partial order graphs 
are representations taken from discrete 

the past decade, we expect the usability stan-
dard to continue to improve. Unfortunately, 
improvements may be slow, because work on 
usability is usually less rewarded in science 
than is research on new methods.

Visual analytics. In the process of under-
standing and interpreting biological data, 
tools ideally would provide visualization 
for tasks that require human judgment, 
and other tasks would be automated where 
possible. But, finding a productive balance 
between automation and visualization is a 
challenge and is one of the goals of visual ana-
lytics methods12, which involve studying the 
role of visualization in the whole process of 
analyzing and understanding data. Recently, 
these methods have begun to be applied to 
biological visualization tools, and, if success-
ful, these developments will improve the abil-
ity of tools to provide meaningful biological 
insights13 and to meet user requirements14.

Multiscale representation and navigation. 
Biological data visualization often deals with 
a broad range of scales—for example, images 
may range from the atomic scale to the cel-
lular level3,5, and genomic browsers provide 
information from whole chromosomes 
down to an individual nucleotide position. 
To be useful, the graphical representations 
used need to adjust, ideally displaying the 

are being made (for example, CCDB10, http://
ccdb.ucsd.edu/), but a truly consolidated 
resource for image data is likely to remain a 
distant goal owing to difficulties with defin-
ing standards for organizing and categorizing 
these data and to data set sizes that are pro-
hibitively large for network-based transfer.

user-interface challenges
Although visualization methods and tools 
have greatly improved, there has also been 
an exponential increase in the size and 
complexity of data sets studied in biol-
ogy. A common challenge faced by many 
biologists is how to benefit from this data 
deluge without being overwhelmed by it. 
Visualization is clearly part of the solution; 
however, the sheer number and diversity of 
tools available can make the problem worse. 
Below we discuss several recent advances 
toward addressing these issues.

Usability. Very often, biologists fail to fully 
benefit from visualization methods because 
software tools are too difficult to learn. 
Making software that is easy to use often 
requires considerable work. Fortunately, 
there have been many advances in under-
standing principles of software usabil-
ity11. These principles are increasingly being 
adopted by developers of visualization tools 
for biologists. Judging from progress over 

Figure 1 | Possible integrated visualization environment. Soon, biologists may be able to seamlessly move between data from tissue, cellular and molecular 
scales, as well as data from genomes, networks and pathways. Many of these data will be organized around a cellular coordinate framework, and visualization 
of biochemical pathways will allow increasingly detailed representations of cellular topology and of proteins. For instance, selecting a tissue (left image) could 
automatically show micrographs of cell types; selecting a cell type could show relevant pathways (center image); selecting a protein from the pathway could 
access micrographs showing the cellular distribution and effects of knockdown experiments (bottom, center); in addition, selecting the protein could show 
atomic-detail three-dimensional structural information, sequence features, alignments and genomic location. Many of these interoperations are already being 
used today. Images courtesy of ClearScience (drawing), iStockPhoto (lung X-ray), Univ. of Kansas Medical Center (lung histology), Digizyme and Cell Signaling 
Technology (pathway). Protein structure and sequence alignment made using SRS 3D; chromosome image from UCSC Genome Browser8.
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Creating such integrated visualization 
frameworks will require a collective effort, 
and several initiatives toward collabora-
tive, community-based editing of biological 
image data have already begun (for example, 
CATMAID27). But all these efforts are still 
very much at the pioneering stage, and, to 
paraphrase Alan Kay, we could say that the 
revolution in biological data visualization 
hasn’t started yet.

competInG IntereStS Statement
The authors declare no competing financial interests.

1. Nielsen, C.B., Cantor, M., Dubchak, I., Gordon, D. 
& Wang, T. Nat. Methods 7, S5–S15 (2010).

2. Procter, J.B. et al. Nat. Methods 7, S16–S25 
(2010).

3. O’Donoghue, S.I. et al. Nat. Methods 7, S42–S55 
(2010).

4. Gehlenborg, N. et al. Nat. Methods 7, S56–S68 
(2010).

5. Walter, T. et al. Nat. Methods 7, S26–S41 (2010).
6. Shannon, P. et al. Genome Res. 13, 2498–2504 

(2003).
7. Waterhouse, A.M., Procter, J.B., Martin, D.M., 

Clamp, M. & Barton, G.J. Bioinformatics 25, 
1189–1191 (2009).

8. Rhead, B. et al. Nucleic Acids Res. 38 (database 
issue), D613–D619 (2010).

9. Berman, H., Henrick, K. & Nakamura, H. Nat. 
Struct. Biol. 10, 980 (2003).

10. Martone, M.E. et al. J. Struct. Biol. 161, 220–231 
(2008).

11. Shneiderman, B. & Plaisant, C. Designing the User 
Interface: Strategies for Effective Human-Computer 
Interaction 5th edn. (Addison Wesley, Reading, 
Massachusetts, USA, 2009).

12. Thomas, J.J. & Cook, K.A. Illuminating the Path: 
The Research and Development Agenda for Visual 
Analytics (National Visual Analytics Center & IEEE, 
Richland, Washington, USA, 2005).

13. Saraiya, P., North, C. & Duca, K. IEEE Trans. Vis. 
Comput. Graph. 11, 443–456 (2005).

14. Mirel, B. J. Biomed. Discov. Collab. 4, 2 (2009).
15. Nielsen, C.B., Jackman, S.D., Birol, I. & Jones, 

S.J.M. IEEE Trans. Vis. Comput. Graph. 15, 881–
888 (2009).

16. Grasso, C., Quist, M., Ke, K. & Lee, C. 
Bioinformatics 19, 1446–1448 (2003).

17. Le Novère, N. et al. Nat. Biotechnol. 27, 735–741 
(2009).

18. Ball, R. & North, C. Comput. Graph. 31, 380–400 
(2007).

19. Freeman, T.C. et al. PLOS Comput. Biol. 3, e206 
(2007).

20. Gillet, A., Sanner, M., Stoffler, D. & Olson, A. 
Structure 13, 483–491 (2005).

21. Garcia-Ruiz, M.A. & Gutierrez-Pulido, J.R. 
Interact. Comput. 18, 853–868 (2006).

22. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. 
Nucleic Acids Res. 30, 1575–1584 (2002).

23. Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R. & 
Stein, L. BMC Bioinformatics 2, 7 (2001).

24. Shannon, P.T., Reiss, D.J., Bonneau, R. & Baliga, 
N.S. BMC Bioinformatics 7, 176 (2006).

25. Burrage, K., Hood, L. & Ragan, M.A. Brief. 
Bioinform. 7, 390–398 (2006).

26. Suderman, M. & Hallett, M. Bioinformatics 23, 
2651–2659 (2007).

27. Saalfeld, S., Cardona, A., Hartenstein, V. & 
Tomancák, P. Bioinformatics 25, 1984–1986 
(2009).

accomplished using a standard personal 
computer. However, in almost all areas of 
biology, visualization of cutting-edge data 
sets remains a challenge. For instance, a 
modern high-throughput image data set 
may consist of thousands of videos or hun-
dreds of channels (each channel typically 
corresponding to one gene product)—and 
may be up to tens of terabytes in size. To 
interactively visualize these data, personal 
computers are often inadequate.

This situation is inspiring further inno-
vation in software—especially in methods 
for dimension reduction and classification, 
which underlie visualization tools in many 
areas of biology. For example, the recently 
developed MCL clustering algorithm22—
which enables fast network clustering—has 
been implemented in a range of visualiza-
tion tools, particularly in systems biology. 
Although these advances will undoubtedly 
improve on today’s limitations, our ability 
to collect data will also continue to improve, 
and it is certain to continually challenge our 
visualization capabilities.

Future visualization
Ultimately, the goal of visualizing biologi-
cal data is to provide biologists with an 
integrated framework they can use to gain 
insight into the processes in organelles, 
cells, organs and even whole organisms. 
Fulfilling this ambitious goal requires sub-
stantial further development in visualiza-
tion methods, especially better integration 
of different tool types.

Several efforts to build such integrated 
visualization frameworks have begun—for 
example, using the framework of genomic 
coordinates to integrate increasingly diverse 
data23. Other frameworks based on com-
monly used systems biology data types are 
being developed24. And projects from the 
structural biology and microscopy com-
munities aim to integrate biological data on 
the basis of a cellular coordinate framework 
(for example, Visible Cell25 and others26) by 
synthesizing multiscale data, including data 
from cellular tomograms, cryo-electron 
microscopy, and atomic-detail three-dimen-
sional structures, as well as inventories of 
expressed proteins, estimations of organelle 
shapes and distributions, and protein local-
izations and gradients. Probably no single 
framework will suit all biologists; however, 
the goals of these different efforts may even-
tually produce a standardized visualization 
environment that allows seamless integra-
tion of biological data (Fig. 1).

mathematics that are now being used to cre-
ate concise summaries of multiple alignment 
information (for example, POAVIZ16) and to 
visualize alternative gene splicing.

Standardized representations. Because visu-
alization methods are still rapidly evolving, 
part of the difficulty faced by end users today 
arises from a lack of standards in representa-
tions. Although there is an obvious strength 
in diversity, and indeed a need for continued 
innovation in graphical representation, in 
many cases usability would be enhanced by 
the adoption of some standards in represen-
tation. In systems biology, there has recently 
been a significant community-driven pro-
posal17 toward developing a more unified 
standard for graphical notation of biochemi-
cal networks, and we anticipate similar pro-
posals in other areas.

Display hardware. To help display and use 
complex biological data sets, large display 
devices and tiled arrays with improved reso-
lution are likely to be of significant benefit18. 
As these devices become more affordable, 
they are likely to see more use. For instance, 
touch tables are promising for navigation and 
collaborative work on complex phylogenetic 
hierarchies (http://involvweb.org/).

Adding a third dimension. The use of three-
dimensional visualization is being explored 
for networks19, phylogenetic trees (Procter et 
al.2) and genomics data (for example, http://
genodive.org/). Although the third dimen-
sion adds complexity to the user interface, 
three-dimensional visualization may be 
necessary for some very complex data sets. 
Visualization in three dimensions is helped 
greatly by hardware stereo, which is now 
becoming easily affordable.

Augmented computer interaction. For chal-
lenging data sets, we anticipate the increased 
use of methods that augment or improve 
the ability to interact with visual data. For 
example, tangible devices that give touch 
feedback are becoming more affordable and 
are promising for three-dimensional struc-
ture visualization20. Preliminary studies on 
augmenting visualization with auditory tech-
niques (‘sonification’) have also been done, 
using molecular three-dimensional structure 
and sequence information, and preliminary 
results are encouraging21.

computational challenges
Today, many visualization tasks are easily  
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